Features
- Eight Independent Delay Channels
 - 1 ps Time Resolution
 - < 100 ps rms Jitter for Optical Triggered Delays
 - 1 Second Range
- Electrical or Optical (optional) Pulse Output
- Three Trigger Modes
 - Internal, External, or Timing System
- Independent Control of Delay
- Controlled via Ethernet, Web Page and Front Panel
- Compact Packaging 1U, 19”

Applications
- Picosecond Timing System
- Components Test
- ATE Application
- System Laser Timing Control
- Control Flash Lamps and Q-Switches
- Precision Pulse Application
- Gate High Speed Cameras
- Instrument Triggering

Description
The GFT1018 Slave Delay Generator is specially designed to provide precise pulses in timing system applications where a Master delivers an optical data stream to synchronize Slave Delay Generators (see below).

The GFT1018 provides eight electrical or optical independently delayed pulses on the rear panel. Delays up to 1 second can be programmed with 1 ps resolution, and channel-to-channel jitter less than 100 ps rms.

BNC outputs deliver pulses up to 10 V with 1 ns rise time at 50 Ω. As an option SC/PC outputs deliver optical pulses up to 1 mW (0.3 mW typ.)

One input channel, or one synchronized timer, or software commands may be used to trigger all output channels. One T0 channel is used as a time reference for all delayed output pulses.

GFT1018 parameters can be locally controlled from the front panel keys and LCD display, and remotely controlled via Ethernet (10/100 Mb/s) or Internet (Web page from Internal Web server).
Specifications

Delays Channels
Number 8 independents
Range 0 to 1 s
Resolution 1 ps
RMS Jitter Timing system mode < 100 ps (T0 GFT1018 to another T0 GFT1018)
External Trigger < 1.5 ns (External trigger to T0 Output)
Drift < 200 ps pp @ 24 hours
< 500 ps pp @ 7 days
< 1000 ps pp up to 7 days
Accuracy < ±1 ns pp for a delay between 0 to 1 s

External Trigger Input
Repetition Rate Up to 100 kHz
Trigger Level +5 V / 50 Ω
Slope Positive
Connector BNC

Internal Trigger
One Synchronized Generator
Frequency = 1 Hz to 100 kHz in steps of 1 Hz

Optical Input Trigger
Function Input for Timing System operation
Sensitivity Between -10 to -25 dBm
Wavelength 1550 nm ± 10 nm
Connector SC/APC

Output Pulse T1 to T8
Amplitude 10 V
Load 50 Ω ± 2%
Rise / Fall time < 1 ns / 3 ns
Width 1 µs +/- 100 ns
Form Square
Connector BNC

Output T0
Amplitude 10 V under 50 Ω
Rise / Fall time < 1 ns / 3 ns
Width 1 µs +/- 100 ns

Clock Output
Frequency 9.72 MHz
Load 50 Ω ± 2%
Level > ±1 V pp / AC
Form Square
Connector BNC

General
Software Free Drivers for Windows7
User Interface Front panel, Ethernet 10/100 Mb/s, Internet (Web page)
Power Consumption 90 to 240 V / 50 – 60 Hz / 1 A
Temperature 20 to 25°C
Weight / Size < 8 kg / 19”, 2U

Option 1: Optical Output Pulse (T1 to T8)
Amplitude 1 mW (0.3 mW typ)
Rise / Fall time <1 ns / 3 ns
Form Square
Width 1 µs +/- 100 ns
Connector SC/PC
Functional Overview

Block Diagram
The GFT1018 includes the five following functions: Time Base, Trigger Controller, Delay Channel, Channel Outputs and Interface Controller.

Time Base: This function provides a 155.52 MHz time base from an internal clock (10 MHz) or from an optical timing system. The time base (9.72 MHz) is available on the rear panel (CLCK OUT).

Trigger Controller: This function provides different trigger modes to each delay channel.
 - External trigger
 - Internal trigger from programmable generator between 1 Hz to 100 kHz
 - Timing System mode from Optical input

Delay Channel: There are eight delay channels (T1 to T8). The delay of each channel is programmable up to 1 second in 1 ps increments. The T0 output pulse is used as a time reference for all delayed output pulses.

Channel Output: Each delay channel provides an output pulse. The outputs are designed to drive 10 V, 1 ns under 50Ω loads, (or 1 mW for the Optical Output option)

Interface Controller: It manages internal functions (Time Base, Delay, Outputs Channels, Front Panel operation, Ethernet network and Web pages via embedded web server).

Trigger Modes: Trigger sources may be chosen from TRIG IN input, internal trigger, or optical trigger. The sequence follows 3 phases:
 - After an insertion delay, a reference pulse appears at the "T0" output,
 - Following the reference, a pulse will appear on each channel after a specified delay,
 - At the end of sequence, after the final delayed output pulse, the delay generators are re-armed.

When a sequence is in progress the instrument will not respond to any trigger events.

After power on, all trigger sources are off (INH).

- **External Trigger Mode**
 When the external trigger source is selected, a rising edge on a "DEC" input starts a delay sequence.

- **Internal Trigger Mode**
 In this mode a delay sequence can be started from a programmable internal generator.

Internal trigger is synchronized with the Timing System trigger.
Timing System Mode
In this mode the GFT1018 receives an optical data stream from a GFT3001 Master Unit. GFT3001 provides triggers and time base over an optical network to synchronize Slave generators.

- **Repetitive Triggers** F1, F2, F3 are synchronous with the clock and synchronous between each other. Their frequency of repetition is programmable according to 1 kHz to 1 Hz
- **Single-Shot Triggers** are started by an external signal or a command. The three triggers DEC0, DEC1 and DEC3 are synchronous with repetitive trigger F3. DEC0 is used to activate low frequency equipment very early in the event like, for example, high voltage power supplies. DEC1 and DEC3 are used to activate fast equipment near or during the event like digitizers, streak cameras, and calorimeters for diagnostics.

Software Tools
There are three ways to control the generator
- Locally via the front panel (Display, Keyboard, and Indicators)
- Remotely via Internet (Web page from Internal Web server)
- Remotely via LabVIEW software application or PC software application

Control panel Web page:
This web page, from an embedded Web server, provides a simple method to configure settings for each channel (delay, output amplitude, output width, trigger source, trigger mode), to control operation, and to display status of the instrument. The configuration information of the instrument is stored and saved in the GFT1018. The web page can be opened via Internet Explorer, Mozilla Firefox or Chrome. After connecting a cable from the GFT1018's Ethernet port to your computer network, enter the GFT1018's IP address into your PC's browser (the IP address can be identified or assigned via the front panel). The browser will automatically open the control panel web page on your PC.
GFT1018: 8 Channel Slave Generator

Packaging

Connector, Switch, Indicators

<table>
<thead>
<tr>
<th>Front Panel</th>
<th>Rear Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicators</td>
<td>RESEAU</td>
</tr>
<tr>
<td>OPT</td>
<td>LAN connection: RJ45 connector</td>
</tr>
<tr>
<td>T1</td>
<td>CLK</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>T1 to T8</td>
</tr>
<tr>
<td>T4</td>
<td>T1 to T8</td>
</tr>
<tr>
<td>T5</td>
<td>DEC</td>
</tr>
<tr>
<td>T6</td>
<td>PLUG</td>
</tr>
<tr>
<td>T7</td>
<td>I/O</td>
</tr>
<tr>
<td>T8</td>
<td>Power ON/OFF switch</td>
</tr>
<tr>
<td>PWR</td>
<td>Power supply ON</td>
</tr>
<tr>
<td>ETH</td>
<td>RJ45 connected</td>
</tr>
</tbody>
</table>

- Small keyboard for local control
- Display for local control

Ordering information

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFT1018</td>
<td>Slave generator base version</td>
</tr>
<tr>
<td>-E</td>
<td>Electrical outputs</td>
</tr>
<tr>
<td>-O</td>
<td>Optical outputs</td>
</tr>
</tbody>
</table>

Ordering example: GFT1018-O: Slave generator with Optical Outputs